

Overview of High Performance School Design

Stephen Hamstra, P.E., LEED AP, CGD
Executive Vice President
GMB Architects-Engineers

Energy Efficiency and Renewable Energy

Why?

- ✓ Improve Student Performance
- ✓ Increase Average Daily Attendance
- ✓ Increase Staff Retention
- ✓ Reduced Operating Cost
- ✓ Reduced Liability
- ✓ Reduced Environmental Impact
- √ Using the School as a Teaching Tool

Design Guideline: 3 Step Process

- 1. Reduce the HVAC loads.
- 2. Reduce the HVAC loads.
- 3. Reduce the HVAC loads.

U.S. Department of Energy Energy Efficiency and Renewable Energy

Building Siting/Orientation

- · Long Axis of Building Runs East/West
- Reduces Solar Load
- · Provides Greater Opportunity for Daylighting

U.S. Department of Energy Energy Efficiency and Renewable Energy

Windows

- Typically the largest envelope contributor to heating and cooling loads.
- Can provide excellent payback in certain applications.
- Don't' forget to adjust for the frame!
- Example: Typical Low E Double Pane has a "Center of Glass" U Value of 0.32
- If you adjust for a thermally broken aluminum frame, operable window this U Value is actually 0.49 (53% more heat loss!)

High Performance Glass

- Thin film glazings (suspended optically clear film between glass)
- Overall U Values (including frame) of 0.14 to 0.37.
- Shade Coefficients of 0.15 to 0.65.
- · Be careful with triple pane glass

High Performance Glass

- · Can eliminate the need for perimeter heating.
- "Rule of thumb": calculate U Value needed to keep interior surface temperature above 60° F at Design Conditions. Example; for OA = 0°, U= 0.2
- Example: typical building with good insulation and 30% glass. Change from Low E double pane to Suspended Film 3 Element (U=0.22):
 - Glass cooling load cut by 50%!
 - Overall cooling load cut by 15%!
 - Glass heating load cut by 62%!
 - Overall heating load by 20%!

Energy Star Roof at Zeeland

U.S. Department of Energy Energy Efficiency and Renewable Energy

Electrical System

- High Efficiency Lighting Systems
- Daylight Harvesting
- High Efficiency Transformers
- High Efficiency Motors
- Renewable Energy Systems

Daylighting

- Up to 40% of Building Electrical Use is Related to Lighting
- Window Orientation (North or South Facing)

Typical Trench

Pre-manufactured HDPE Vault

U.S. Department of Energy Energy Efficiency and Renewable Energy

U.S. Department of Energy Energy Efficiency and Renewable Energy

- Induction Nozzles
 - Enables delivery of 52-55F primary air.
 - Induces 2 CFM room air per CFM primary air.
- Integral Heat Transfer Coil
 - Supplements sensible cooling.
 - Eliminates need for separate heating system.

Comfort

- Human heat-transfer consists of evaporation, convection and radiation
- Chilled ceilings closely model the function of the human body, making it an ideal solution for cooling
- The heat-transfer with radiation is more comfortable than with evaporation or convection
- Radiant Cooling causes no air movement and no drafts
- Radiant Cooling makes no noise!
- Radiant Cooling offers the highest possible human comfort!

Adaptive Control Systems

Questions?

